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Theoretical and numerical results obtained in the present investigation illustrate that the
motions of the vorticity centroids and the unsteady deformation of the vortex cores are the
sources of sound in the inviscid two-dimensional vortex interactions at low Mach number.
A theory for the sound generation, based on the low Mach number vortex sound theory, is
developed and the relationship between the core deformation and sound radiation for
slightly deformed vortices is explicitly found. The unsteady vortex core deformation is also
found to be important in all the interaction cases discussed.
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1. INTRODUCTION

It is now well known that sound can be generated by turbulent #ow. The fundamental
aeroacoustics theory of Lighthill [1] pioneered this branch of research. Many models for
turbulent sound generation have been developed in the past few decades. Typical examples
include the wave antenna of Crow [2], the vortex sound theory of Powell [3], the instability
wave model of Ffowcs Williams and Kempton [4] and the stagnation enthalpy of Doak [5].
However, from the stress tensor of Lighthill [1] to the more recent stagnation enthalpy of
Doak [5], the theoretical sound sources are abstract and very often not physically
measurable. The experimental development, therefore, seriously lags behind the theoretical
one such that some of the theoretical deductions have not yet been con"rmed. The question
of how sound is produced by turbulent structures remains open.

The advance in computing technology allows the direct numerical simulation of sound
production by a turbulent #ow. Colonius et al. [6] and Mitchell et al. [7] found that the
conventional acoustical analogy has given rise to source terms that may not have
contribution in the overall sound "eld produced by a shear layer. Though their results show
some essential features of the experimental sound "eld, the source terms they used involve
local #uid velocities and their gradients, which can hardly be measured. The relationships
between these terms and the turbulent structure activities are not clearly understood.

Owing to the di$culty in tackling turbulent #ow, one may focus the study on a simpler
#ow*the vortices. The vortices, though they are drastic simpli"cations of the real #ow, can
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still provide insights into the physics of many practical #ows. Typical studies are those of
Acton [8] and Stansby and Slauoti [9]. Powell's theory of vortex sound [3] provides
a framework for the study of turbulent sound using vortices. The results of MoK hring [10]
and Leung et al. [11] show that the pairing of two thin inviscid vortex rings can produce
a sound "eld having the essential characteristics of jet noise. The results of the numerical
studies of the authors [12}14], using the method of contour dynamics, have illustrated the
importance of vortex acceleration and jerk in the production of sound. This observation
appears to be consistent with the experimental results of Laufer and Yen [15] and Tang and
Ko [16]. At least to the knowledge of the authors, Tang and Ko [16] is the "rst direct
comparison between theory and experiment in the long quest for the sound generation due
to the vortical structure dynamics in an air jet.

Two-dimensional vortical structures are commonly found in plane shear layers [17].
They undergo leapfrogging and coalescence within these shear layers and are responsible
for the growth of the shear layer [17]. Though the results of Tang and Ko [14] suggest that
the sound so produced is the result of the unsteady motions of the vorticity centroids of
these structures, the actual sound generation mechanisms are not well understood.
Di!erences and similarities in the sound generation mechanisms in the leapfrogging and
coalescence are not explored. Thus, the present paper is an attempt to extend the above work of
the authors for a deeper understanding on the sound generation mechanisms. It is hoped that
the present results can provide useful information towards the development of a generalized
theory for sound generation by "nite core vortex interactions at low Mach number.

2. THEORETICAL CONSIDERATIONS

2.1. METHOD OF CONTOUR DYNAMICS

This method was "rst developed by Zabusky et al. [18] for the calculations of non-linear
vortex patch evolution. The boundaries of the vortex cores are treated as contours. The
velocity of each element on these boundaries is calculated by using the Biot}Savart
induction law in the presence of vorticity. The #uid velocity, u, at a point, y, in the #ow "eld
is related to the local streamfunction t as

u"+](tyL
3
), (1)

where y(
3

is a unit vector in the vortex spanwise direction. The vorticity transport equation
for incompressible #ow suggests

Du/Dt"0, (2)

where t is the interaction time and u the vorticity at the point y. The calculation of
u involves an integration over the cross-sections of the vortex cores, which can be
transformed into a contour integral using the Stoke's theorem. Full details on the
application of this method in the two-dimensional vortex system can be found, for example,
in Zabusky et al. [18], Dritschel [19] and some previous works of the authors [13, 14].
Thus, they are not repeated here.

2.2. VORTEX SOUND GENERATION MECHANISMS

The vortex sound theory of Powell [3] shows that the far"eld pressure #uctuations, p,
produced by the unsteady low Mach number motions of vorticity-bearing #uids can be



Figure 1. Schematic diagram of vortex interaction system.
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obtained by solving the following inhomogeneous equation:

1

c2

L2p

Lq2
!+ 2p"o

0
+ ) (u]u), (3)

where c and o
0

are the speed of sound in and the density of the ambient #uid, respectively,
and q is the observer time. The general solution of equation (3) for p at a far"eld
displacement x is, according to MoK hring [10]:

p(x, q)"
o
0

12nc2

L3

Lq3 P
(x; ) y)y ) (u]x( )

Dx!y D
d<, (4)

where the cadet denotes a unit vector, y the position of u and < the volume
of the vorticity-bearing #uid. The integral is evaluated at retarded time t"
q!Dx!y D/c.

The two-dimensional vortices produce a non-compact #ow "eld. Their motions and the
positions of their boundaries can be described by using the longitudinal and transverse
co-ordinates, denoted thereinafter as y

1
and y

2
respectively (Figure 1). The spanwise

direction y
3

is important only in the evaluation of the "nal far"eld pressure #uctuations as
the integral in equation (4) has to be taken over this dimension from !R to #R [20]. It
is assumed that the far"eld distance Dx D is much larger than any length scale in the #ow "eld
and thus, the e!ect of vortex separation on the far "eld can be ignored. One should note that
the present theory applies only to the cases where the vortex separation and vortex core size
are both much smaller than the wavelength of sound radiated. The e!ect of source
non-compactness found by Mitchell et al. [21] and the sound-#ow interaction [2] can be
neglected.
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Denoting the cross-sectional area of the vortex system by A, equation (4) becomes

p (x, q)"
o
0

12nc2 P
=

~=

1

Dx!y D
L3

Lt3Acos 2h Q uy
1
y
2
dA#sin 2h Q

y2
2
!y2

1
2

u dABdy
3
, (5)

showing that there are two quadrupoles co-existing. Equation (5) can be numerically
integrated through a transformation to a time integration [14, 22]. However, such
integration is not related to the sound generation mechanisms. The present study focuses
the attention on the two source terms on the right-hand side of equation (5):

S
1
"Q uy

1
y
2
dA and S

2
"

1

2 Q (y2
2
!y2

1
)u dA. (6)

Since the steady motion of vorticity is not a source of sound, the e!ects of any mean motions
in the two source terms have to be eliminated so they are not contributing to the "nal sound
"eld. By de"ning the vorticity centroid of the vortex system y

sc
as

y
sc
"Q uydANQ u dA, (7)

where the integration is carried out over the cross-section of the vortex system and suppose
this vortex system centroid y

sc
is moving with a mean velocity of U (";

1
yL
1
#;

2
yL
2
), one

can then de"ne the relative position of a point inside the vortex core, y@, such that
y@"y!y

sc
"y!Ut. Thus,
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1
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and S
2
"

1
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2
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1
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"

1
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2
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1
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2
!;2

1
2

t2 Q u dA. (8b)

The integral { uy@
i
dA (i"1, 2) vanishes according to the de"nition of y@ and equation (7)

provided that { udAO0. Therefore, the last three terms on the right-hand side of
equation (8) vanish after the triple time di!erentiation (equation (5)). The source strengths
of the two quadrupoles are

L3S
1

Lt3
"

L3

Lt3 Q uy@
1
y@
2
dA and

L3S
2

Lt3
"

1

2

L3

Lt3 Q (y@2
2
!y@2

1
)u dA. (9)

Equation (9) contains no e!ect from the mean motion of the vortex interaction system, U,
and the quantities involved are all Galilean invariants. It is basically a generalized form of
the theoretical deduction of Tang and Ko [14] for a steadily convecting vortex system.
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By focusing on one of the interacting vortices and further de"ning y@@"y@!y
c
, where y

c
denotes the vorticity centroid of the vortex concerned relative to the mean vortex
interaction system motion,

Q uy@
1
y@
2
dA"Q uy@@

1
y@@
2
dA#y

c1 Q uy@@
2
dA#y

c2 Q uy@@
1
dA#y

c1
y
c2 Q udA (10a)

and
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2
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ci Q uy@@

i
dA#

y2
c2
!y2

c1
2 Q u dA,

(10b)

where the integrals have taken over the core of the vortex concerned. Since { uy@@
i
dA"0, it

follows that there are only two mechanisms through which vortex sound can be generated.
The "rst one is the dynamics of the vorticity centroid of each vortex (terms involving y

c
in

equation (10)) and the second one is related to the unsteady motion of the core #uid relative
to this centroid (terms involving y@@ in equation (10)). It will be shown later that the latter is
strongly associated with the core deformation. Equations (9) and (10) are in general
applicable to any two-dimensional vortex systems.

The results of Tang and Ko [14] have shown that the vorticity centroids of the
interacting vortices are undergoing a nominal circular motion about the origin. The polar
co-ordinate system, thus, appears more appropriate in describing their motions. Suppose
the radius of the orbit of centroid motion is r

c
, then

y
c1
"r

c
cos/ and y

c2
"r

c
sin /, (11)

where / is the angular displacement of the vorticity centroid concerned. The source terms
due to the vortex centroid dynamics become

S
1
"r2

c
cos/ sin/ Q u dA and S

2
"

1

2
r2
c
(sin2/!cos2 /) Q u dA. (12)

It can be observed that S
1

and S
2

have the same amplitudes but are 903 out of phase. The
sound source strength resulting from this dynamics is, according to equation (9), given by

1

2

L3

Lt3 Ar2
c Q u dA sin(2(/!h))B

instead of the one having two components in equation (5). Since h is a time invariant, it
follows that the sound from the vorticity centroid dynamics is produced by the triple rate of
change of the term, S

polar
, where

S
polar

"

1

2
r2
c Q u dA sin(2/). (13)

This is essentially S
1
, showing that the source terms S

1
and S

2
are resulting from the same

mechanism.
Since the cross-terms between the vorticity centroid dynamics and the microscopic #uid

motions in the sound source terms vanish (equation (10)), the analysis of the sound
production due to the #uid motions relative to the centroid can be done in exactly the same
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way as discussed above. The corresponding source term S@@ is

S@@"
1

2 Q ur@@2 sin(2(/@@!h)) dA, (14)

where @@ denotes quantity relative to the vorticity centroid of the vortex core concerned.
Suppose the core boundary relative to this vorticity centroid is de"ned by a curve m(/@@), then

S@@"
u
2 P

2n

0
P

m

0

r@@3 sin(2(/@@!h) dr@@d/@@"
u
8 P

2n

0

m4(/@@) sin(2(/@@!h)) d/@@. (15)

S@@ is zero if the vortex core is circular and is a constant if the core shape is non-circular but
remains unchanged relative to the vorticity centroid. This shows explicitly that the sound
"eld resulted from the #uid motions relative to the vorticity centroid (equation (10)) is
related to the unsteady vortex core deformation during the vortex interaction.

3. NUMERICAL RESULTS AND DISCUSSIONS

3.1. IDENTICAL VORTICES

3.1.1. ¸eapfrogging

The initial vortex cores of the present study are taken to be circular. Figure 2 shows
a typical example of the vortex motion for G/p"6, where G and p are the vorticity centroid
Figure 2. Identical vortex core evolution. G/p"6: **, core boundary; #, vorticity centroid.



Figure 3. (a) Time variations of source strengths under leapfrogging vortex motion: **, L3S
1
/Lt3; * *,

L3S
2
/Lt3; * )*, source strength magnitude. (b) Time variations of far"eld pressure under leapfrogging vortex

motion: **, from L3S
1
/Lt3; * *, from L3S

2
/Lt3; * )*, pressure magnitude. G/p"6.

TWO-DIMENSIONAL VORTEX INTERACTIONS 829
initial separation and the initial core radius respectively (Figure 1). Only one vortex core is
shown as the other is just the mirror image in the opposite quadrant. The two vortices
rotate about the origin with some core deformations. The time variations of the
corresponding sound source strengths, L3S

1
/Lt3 and L3S

2
/Lt3 (equation (9)), are given in

Figure 3(a). The source strengths contain two major components*one of low frequency
and the other of higher frequency. Figure 3(b) shows the far"eld pressure #uctuations
obtained after performing the integration in equation (5). The results show that the
integration has only reduced the magnitudes of the high-frequency components relative to



Figure 4. Decomposition of L3S
1
/Lt3. G/p"6: **, L3S

1
/Lt3; * *, L3S

polar
/Lt3; * )*, L3S@@/Lt3.
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the low-frequency ones; an observation similar to that found by Tang and Ko [14].
The decomposition of the source terms (equation (10)) shows that the low-frequency
component is generated by the vorticity centroid dynamics, while the higher frequency one
is produced by the terms associated with the #uid motions relative to the vorticity centroids
(Figure 4).

Similar high-frequency far"eld pressure #uctuations are also observed by Shari! et al.
[23] for vortex ring interaction. Shari! et al. [23] also ascribed that such #uctuations are
the results of core rotation and notation. However, such #uctuations are not found in the
results of the direct computations of Mitchell et al. [21]. The reason for this is not known,
but it has been found that the increase in the bulkiness of vortex cores reduces the
magnitudes of the high-frequency far"eld pressure #uctuations [13]. The compressibility
and viscosity of a real #uid may also tend to damp down the high-frequency #uid motions
within the vortex cores. This issue is left to further investigation.

The circulation of each vortex does not change with time. One can then decompose the
triple time derivative of S

polar
, as depicted in equation (13), in the same way as in Tang and

Ko [12] with an understanding that the far"eld observer angle h is ignored:

L3S
polar

Lt3
"

1

2 Q u dAAsin (2/)
L3r2

c
Lt3

#3
L2r2

c
Lt2

L sin (2/)

Lt
#3

Lr2
c

Lt

L2sin(2/)

Lt2
#r2

c

L3sin(2/)

Lt3 B .

(16)

It should be noted that the time variation of r
c
, though of a very small magnitude, contains

a component having frequency the same as those of the high-frequency #uctuations in the
source strengths presented in Figure 4. However, it can be shown that the last term on the
right-hand side of equation (16) contributes substantially to the sound generation. A further
decomposition of this term suggests

L3S
polar

Lt3
+!4cos(2/)r2

c
/Q 3 Q u dA#R, (17)



Figure 5. Decomposition of L3S
polar

/Lt3. G/p"6: **, !4 cos(2/)r2
c
/Q 3u dA; * *, L3S

polar
/Lt3; * )*, R.
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where /Q "L//Lt and R is the remainder. The latter varies nearly sinusoidal with time
(Figure 5). However, the magnitude of R is insigni"cant when compared to those of the
high-frequency #uctuations associated with the #uid motions relative to the vorticity
centroid.

If one assumes no deformation of vortex core so that the core remains circular
throughout the interaction, the overall e!ects of the #uid motions relative to the vorticity
centroid on sound generation vanish, that is, L3S@@/Lt3"0. Also, R,0 when /Q and r

c
are

constants. Equation (17) is then the spinning vortex sound of Powell [3]. In addition, the
expression r2

c
{u dA represents the angular momentum of the vortex system if the vortex

cores remain circular. Since the total angular momentum of each vortex is conserved even if
core deformation takes place, R can be interpreted as the generation of sound due to
a transfer of the angular momentum between the macroscopic mean motion and the
microscopic core #uid activities. However, this component is not important as illustrated in
Figure 5.

Figure 4 and equation (14) show that the higher frequency component in the sound
source strength is due to the unsteady core deformation. The magnitude of the source
strength DL3S@@/Lt3 D varies slightly with time (Figure 6). Figure 7 shows the core shapes of
the vortex at ut"86 and 92)4, corresponding to the instants of maximum and minimum
source strength magnitudes respectively. The highest source strength appears at the instant
when the vortex core is approximately circular. In order to get a deeper insight into the
relationship between core deformation and the source strength magnitude, core
deformation here is de"ned by using a di!erential radius

Dp"$(max Dy!y
c
D!min Dy!y

c
D ). (18)

The &&#'' and &&!'' signs denote the circumstances when the longer principal axis is in the
"rst/third and second/fourth quadrants respectively. The rate of core deformation is,
therefore, L (Dp)/Lt. Figure 8 shows clearly that a higher source strength magnitude is
associated with a higher rate of core deformation. The rate of deformation is the highest at
the instant when the vortex core is circular (Dp"0). The same phenomenon is observed in



Figure 6. Time variation of L3S@@/Lt3 magnitude. G/p"6.

Figure 7. Vortex cores at minimum and maximum L3S@@/Lt3 magnitudes. G/p"6:* *, vortex core at ut"86;
**, vortex core at ut"92)4; #, vorticity centroid at ut"86; ], vorticity centroid at ut"92)4.
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the leapfrogging motion of two-dimensional vortices at other G/p (not shown here). The
smaller this separation, the larger the core deformation and source strength magnitude time
#uctuation.



Figure 8. Relationship between L3S@@/Lt3 magnitude and core deformation rate. G/p"6. **, DL3S@@/Lt3 D ;
* )*, L (Dp)/Lt.
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The source strength of the high-frequency component L3S@@/Lt3 cannot be decomposed as
in equation (16). Since Figure 2 shows that the vortex cores are approximately elliptical,
one can assume that each vortex core is a tilted ellipse such that

m(/@@)"Ja2
1
cos2(/@@!b)#a2

2
sin2 (/@@!b), (19)

where b is the tilt angle, a
1
and a

2
are the half-length of the longer and shorter principal axis

respectively (a
1
*a

2
). Then equation (15) gives

S@@"
nu
32

(a4
1
!a4

2
) sin(2(b!h))"

C

16
(a

1
#a

2
)(a

1
!a

2
) sin(2(b!h)). (20)

When the longer principal axis of the core is in the "rst/third quadrant, sin(2b) is positive.
The reverse is true when this axis is in the other two quadrants. The sound so produced is
highly related to the rate of change of the di!erence (a

1
!a

2
) and the rotation of the vortex

core principal axes. The deduction from this elliptical core assumption appears consistent
with equation (18) and with the results shown in Figures 6 and 8.

In this case of G/p"6, the term (a
1
#a

2
) varies less than 0)3% (not shown here). One can

then conclude that

L3S@@
Lt3

J

L3

Lt3
((a

1
!a

2
) sin(2(b!h))). (21)

Figure 9 shows clearly the validity of this elliptical core analysis, though there is a small
discrepancy between the magnitudes of the actual S@@ (equation (14)) and that estimated by
the elliptical core assumption (equation (20)). The frequency of source term #uctuations is
the same. This is acceptable, as the cores are not exactly elliptical. This con"rms that the
source of high-frequency source strength #uctuations is the coupling between the rate of
core deformation and the rotation of the core relative to the vorticity centroid. Further
decomposition of equation (21), as in equation (16), is not possible as the factor (a

1
!a

2
) is



Figure 9. S@@ compared to that from elliptical core assumption. G/p"6, h"0:**, S@@; * )*, elliptical core
assumption.

Figure 10. Vortex core evolution under coalescence. G/p"2)5. (a) ut"6)1; (b) ut"40: **, * *, core
boundaries; #,], vorticity centroids.
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not time di!erentiable at the instant when the core becomes circular (thus, a
1
"a

2
). Similar

results are obtained for other G/p, in which the leapfrogging vortex motions are observed
(not shown here).

3.1.2. Coalescence

Since the vortex boundary cannot come into mutual contact in the inviscid model,
coalescence is de"ned as the mutual &&folding together'' of two interacting "nite areas of
non-zero vorticity, as in Jacobs and Pullin [24]. Two vortices coalesce with each other when
G/p is su$ciently small. A typical example with G/p"2)5 is shown in Figure 10.

Figure 11(a) shows the time variations of the source strengths and the overall source
amplitude. Unlike the leapfrogging case, the source amplitude increases to a maximum at



Figure 11. (a) Time variations of source strengths under vortex coalescence: **, L3S
1
/Lt3; * *, L3S

2
/Lt3;

* )*, source strength magnitude. (b) Time variations of far"eld pressure under vortex coalescence: **, from
L3S

1
/Lt3; * *, from L3S

2
/Lt3; * )*, pressure magnitude. G/p"2)5.
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ut+6)1 and no sinusoidal #uctuation is found afterward. Maximum source strength
amplitude is observed during the "rst &&folding up'' of the vortex cores, at which the cores
become substantially &&¸'' shaped (Figure 10(a)). It can also be noted from Figures 4 and
11(a) that the magnitude of the source strength produced by vortex coalescence is higher
than that by the leapfrogging vortex motions. This is probably due to the higher energy
content of the present coalescing vortex system, which leads to a more unsteady and
rigorous vortex interaction. Figure 11(b) shows the far"eld pressure #uctuation time
variations obtained after the integration in equation (5). They are similar to those shown in
Figure 11(a) and thus are not discussed.



Figure 12. Decomposition of L3S
1
/Lt3. G/p"2)5: **, L3S

1
/Lt3; * *, L3S

polar
/Lt3; * )*, L3S@@/Lt3.
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Since it has been shown previously that the source terms S
1

and S
2

from the same
mechanisms, the following discussions will focus on S

1
only. The time variations of the

source strengths due to the vorticity centroid dynamics and unsteady core deformation are
illustrated in Figure 12. These #uctuations contain high-frequency components, which tend
to counteract each other. The resultant L3S

1
/Lt3 is of lower frequency. This observation

di!ers signi"cantly from the results in the leapfrogging case, where the two mechanisms
produce sound of di!erent frequencies.

As the vortex cores are seriously deformed, the di!erential radius, as de"ned in
equation (18), cannot be used and the integral for the core deformation source term S@@
cannot be solved explicitly. However, one can observe from Figure 13 that the source
strengths due to unsteady core deformation and vorticity centroid dynamics contain low-
and high-frequency components. The low-frequency component has a frequency about half
that of the high-frequency one. The strengths of the high-frequency components from these
two mechanisms are the same and they are 1803 out of phase (not shown here) such that the
resultant L3S

1
/Lt3 does not contain this frequency component (Figure 13). The energy level

of the low-frequency component produced by the unsteady core deformation is 6 dB higher
than that from the vorticity centroid dynamics. Together with their out-of-phase
relationship, the resultant has an amplitude half that produced by the unsteady core
deformation. The present result shows clearly that the "nal sound "eld generated by vortex
coalescence is purely the result of the unsteady vortex core deformation.

The time variation of y
c
of one of the vortex cores shows good correlation with L3S

1
/Lt3

and L3S
2
/Lt3, except at short period at the beginning of the interaction (Figure 14). Taking

L3S
1
/Lt3 as an example, the source strength peaks at ut"9)66, 24)8 and 38)4, while the

corresponding troughs are found at ut"3, 18 and 31)4. The core shapes at these instants
are shown in Figure 15. The peaks of L3S

1
/Lt3 are observed when the majority of the core

#uid of the vortex initially at y
1
(0 is on the positive y

1
-axis and they appear in every cycle

when the thin vortex core tail wraps round its main core (c.f. Figure 15(d) and 15(f)). The
troughs are found when the majority of the core #uid of the same vortex is on the negative
y
1
-axis and their period is the same as that of the peaks. Similar phenomena are observed



Figure 13. Frequency spectra of source strengths. G/p"2)5: **, L3S
1
/Lt3; * *, L3S

polar
/Lt3; * )*, L3S@@/Lt3.

Figure 14. Time variations of vorticity centroid position at G/p"2)5: **, y
1
/p; 2 2, y

2
/p.
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for L3S
2
/Lt3, but the corresponding instants of peaks and troughs are related to the y

2
-axis.

The sound produced by vortex coalescence, therefore, depends on the rate of &&folding
together'' between the vortices. However, since the core shapes are very irregular, a more
explicit form of the source strength cannot be found.

Comparing with the data of G/p"3 of Tang and Ko [14], the source strengths in the
present study (G/p"2)5) are higher, showing that these strengths increase with increasing
rate of vortex core &&folding up''.



Figure 15. Vortex core shapes at crests and toughs of L3S
1
/Lt3. G/p"2)5: (a) ut"3; (b) ut"9)66; (c) ut"18;

(d) ut"24)8; (e) ut"31)4; (f) ut"38)4: **, * *, core boundaries; #,], vorticity centroids.
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3.2. UNEQUAL VORTICES

3.2.1. ¸eapfrogging

Leapfrogging motion with mild core deformation also occurs when two vortices of
di!erent circulations interact (Figure 16). The vortices have the same vorticity u, but the
ratio of their initial diameter is 2 : 1, giving a circulation ratio of 4. The initial vorticity
centroid separation G/p

L
is 5, where p

L
is the initial radius of the stronger vortex. Without

loss of generality, the vortex initially on the negative y
1
-axis is assumed to possess higher

circulation. The su$ces R and ¸ thereinafter denote quantity associated with the weaker
and stronger vortices respectively. Since the integration in equation (5), at the most, only
reduces the importance of the high-frequency source strength #uctuations in the overall
sound generation and is not related to any sound generation mechanism, it is not further
performed.

The vorticity centroids undergo nominal circular motion about the centroid of the
interacting system, which is at y

1
/p

L
"!1)5 and y

2
/p

L
"0. Similar to the identical vortex

leapfrogging case, the time variations of their accelerations, jerks and velocities contain
high-frequency components.

The source strengths of the two vortices are depicted in Figure 17. All of them contain
high- and low-frequency sinusoid #uctuations. Again, the discussions on the sound
generation mechanisms are focused on the source strengths L3S

1L
/Lt3 and L3S

1R
/Lt3.

Basically, each of them consists of low- and high-frequency components (Figure 18). The
low-frequency component in L3S

1R
/Lt3 is stronger than that in L3S

1L
/Lt3, but the opposite is

observed for the high-frequency components. The results in Figure 18 suggest that the
weaker and stronger vortices produce, respectively, the low- and high-frequency far"eld
sound.

As in the identical vortex case, the amplitude of the low-frequency sound depends on the
third power of the vorticity centroid angular speed (not shown here). Equation (17) again
applies to this case of unequal vortex leapfrogging motions. The high-frequency
components in the source strengths are the results of unsteady vortex core deformation (S@@)
and rotation of core #uids about the associated vorticity centroids. Since the deformation of



Figure 16. Core evolution under unequal vortex leapfrogging. C
L
/C

R
"4, G/p

L
"5, p

L
/p

R
"2. (a) ut"0; (b)

ut"10; (c) ut"20; (d) ut"30:**, core boundary of stronger vortex;* *, core boundary of weaker vortex;
#, vorticity centroid of stronger vortex, ], vorticity centroid of weaker vortex.
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vortex core is not signi"cant, the elliptical core analysis in the identical vortex leapfrogging
case is still valid. The corresponding results are very similar to those presented in Figure 9
and thus are not presented.

3.2.2. Interaction at large circulation ratio

When the circulation ratio between the two vortices increases, the weaker vortex is
sheared into a vorticity strip under the induced velocity "eld of the stronger vortex.
However, there is no mutual &&folding together'' of the vortex cores. An example of such
a phenomenon with C

L
/C

R
"160, p

L
/p

R
"2 and G/p

L
"5 is shown in Figure 19. The

stronger vortex experiences slight deformation and its vorticity centroid is nearly at rest.
The distance between the vorticity centroids decreases at increased interaction time.

The source strength #uctuations for the above interaction conditions (Figure 19) are
illustrated in Figure 20. The contribution from the stronger vortex contains only



Figure 17. Time variations of source strengths. C
L
/C

R
"4, G/p

L
"5, p

L
/p

R
"2:**, L3S

1
/Lt3 of stronger

vortex; * *, L3S
2
/Lt3 of stronger vortex; * )*, L3S

1
/Lt3 of weaker vortex; * ) )*, L3S

2
/Lt3 of weaker vortex.

Figure 18. Decomposition of L3S
1
/Lt3. C

L
/C

R
"4, G/p

L
"5, p

L
/p

R
"2: **, L3S

polar
/Lt3 of stronger vortex;

* *, L3S@@/Lt3 of stronger vortex; * )*, L3S
polar

/Lt3 of weaker vortex; * ) )*, L3S@@/Lt3 of weaker vortex.
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a high-frequency sinusoidal component, due to the small core deformation as discussed
previously. The disappearance of the low-frequency component is due to the very weak
motion of its centroid. The causes have been discussed previously.

The contribution from the weaker vortex is of low frequency which is approximately
twice that of the rotational speed of the weaker vortex vorticity centroid relative to the
centroid of the interacting system (y

1
/p

L
"!2)469, y

2
/p

L
"0). This tends to suggest that

the dynamics of the vorticity centroid are responsible for the sound generation and
equation (13) is appropriate in describing the underlying mechanism. Again, equation (17)



Figure 19. Vortex cores under larger circulation ratio. C
L
/C

R
"160, G/p

L
"5, p

L
/p

R
"4:**, core boundary

of stronger vortex; * *, core boundary of weaker vortex; #, vorticity centroid of stronger vortex; ], vorticity
centroid of weaker vortex.

Figure 20. Time variations of source strengths. C
L
/C

R
"160, G/p

L
"5, p

L
/p

R
"4. Legends: same as those in

Figure 17.
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is valid and the remainder R in this case is small (Figure 21). A further decomposition of the
remainder R suggests that the term C

R
(Lr2

c
/Lt)(L2 sin 2//Lt2) contributes to a major part of

R at increased interaction time (Figure 21). Since the angular speed of the vorticity centroid
in this case is nearly time invariant, the magnitude of this term is related approximately to
the Corollis acceleration discussed by Doak [5].



Figure 21. Decomposition of weaker vortex contribution. C
L
/C

R
"160, G/p

L
"5, p

L
/p

R
"4:* *,

!4C
R

cos(2/)r2
c
/Q 3; 22, L3S

polar
/Lt3; * )*, R; ) ) ) ) ) ), L3S

1
/Lt3; * ) )*, 3

2
C
R
(Lr2

c
/Lt) (L sin(2/)/Lt).
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The comparison between equation (13) and the source strength of the weaker vortex
(Figure 21) shows the importance of vorticity centroid dynamics in the overall sound
production by the weaker vortex, especially within the "rst cycle even when the vortex core
is severely deformed. The slight deviation at ut'140 is again nearly sinusoidal (Figure 21).
The situation here is similar to that observed during identical vortex coalescence where the
peaks and troughs of the pressure #uctuations are related to the rate of &&folding up'' of core
#uids (Figure 15). The peaks and troughs in the slight deviation at ut'140 observed in
Figure 21 are related to the rate of the weaker vortex &&wrapping round'' the stronger vortex
core. The present insigni"cance of the core deformation in the sound generation process is
not surprising, as one can deduce from equation (15) that the thin strip of vorticity leads to
a vanishing S@@.

Though the stronger and weaker vortices generate sound through di!erent mechanisms,
the results shown in Figure 20 illustrate that the stronger vortex plays the key role in the
overall sound generation.

3.2.3. ¹earing

At a smaller circulation ratio, some of the #uids from the weaker vortex are torn and
induced towards the stronger vortex, forming a thin strip of vorticity. The remaining weaker
vortex #uids remain intact so that a "nite weaker vortex core still exists. This interaction is
referred to as &&tearing'' in the present study. A typical example of such interaction is shown
in Figure 22 (C

L
/C

R
"2, p

L
/p

R
"1 and G/p

L
"4). The tip of the vorticity strip moves

gradually towards the stronger vortex core boundary under the action of the induced
velocity "eld of the stronger vortex.

The source strength of the stronger vortex appears similar to those presented before. Both
the high- and low-frequency components are observed (Figure 23(a)). Again, the
low-frequency one is due to the vorticity centroid dynamics, while the stronger
high-frequency one is due to the core deformation (not shown here). Since the motion of the
vorticity centroid of this stronger vortex is weak when the vorticity bearing #uid from the



Figure 22. Core evolution under tearing. C
L
/C

R
"2, G/p

L
"4, p

L
/p

R
"1. (a) ut"20; (b) ut"75. Legends:

same as those in Figure 16.
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weaker vortex wraps round its core, the "nal sound production is mainly from its core
deformation. The unbalanced vorticity distribution close to the stronger vortex results in
a more rigorous core deformation rate and thus the higher sound energy radiation observed
in Figure 23(a).

The source strength L3S
1
/Lt3 of the weaker vortex also contains a high and a relatively

lower frequency component, with the latter dominating the sound generation before the
vortex core is severely deformed (Figure 23(b)). The high-frequency component is more
related to the core deformation mechanism. A similar phenomenon is observed for L3S

2
/Lt3

and thus not presented. It can also be noted from Figure 23(b) that the vorticity centroid
dynamic is the major source of sound for ut(30. After that, the two mechanisms (vorticity
centroid dynamics and core deformation) counteract with each other in a way similar to
that in the case of identical vortex coalescence (Figure 12). The source strength produced by
the core deformation becomes dominant for ut'50. A strip of vorticity is formed around
the stronger vortex by this instant. Together with the observation in Figure 23(a), it can be
concluded that the deformations of the two interacting vortex cores are the main sources of
sound at increased #ight time. Though the contributions from the two vortices are similar at
the beginning of the interaction, the stronger vortex is mainly responsible for the sound
generation after the weaker vortex is seriously deformed. This is common in the interaction
of unequal vortices.

4. CONCLUSIONS

The sound generation mechanisms of inviscid two-dimensional vortex interactions at low
Mach number are discussed in detail in the present investigation. The vortex interactions
are studied by using the method of contour dynamics, while the sound so generated is
studied by using basically the vortex sound theory. Two distinctive sound mechanisms, due
to the vorticity centroid dynamics and the unsteady core deformation (microscopic core
dynamics), are derived explicitly from the vortex sound theory and con"rmed by the
numerical results obtained.



Figure 23. Time variations of source strengths of both vortices under tearing. C
L
/C

R
"2, G/p

L
"4, p

L
/p

R
"1.

(a) Stronger vortex; (b) weaker vortex: **, L3S
1
/Lt3; * *, L3S

2
/Lt3; * )*, L3S

polar
/Lt3; * ) )*, L3S@@/Lt3.
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For identical vortices, only two types of interactions are observed. They are the
leapfrogging and coalescence. For the leapfrogging, the sound produced by vorticity
centroid dynamics is of low frequency, while that generated by the core deformation is of
higher frequency. The amplitude of the former is proportional to the third power of the
centroid angular speed, which is essentially a time invariant. It is shown explicitly, through
the use of an elliptical core assumption, that the amplitude of the sound generated by the
core deformation depends on the rate of change of the di!erential radius and the rotational
speed of the core principle axes. The sounds generated by these mechanisms do not appear
to be related to each other.
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For the coalescence case, these two mechanisms counteract with each other, resulting
in a low-frequency sound radiation that does not depend on the vorticity centroid
dynamics. The time variation of these source strength #uctuations correlate well
with that of the vorticity centroid location. It is found that the amplitude of the sound is
related to the rate of folding up of the vortex cores. Its frequency equals that of the core
folding up.

For unequal vortices, three types of interactions are observed. The "rst one is the
leapfrogging and the "ndings are the same as those in the identical vortex leapfrogging case,
except that the low-frequency sound from the weaker vortex is stronger, while the opposite
is found for the high-frequency one. The second type of interaction is observed when one of
the vortices is substantially stronger than the other so that the weaker vortex core is sheared
into a thin vorticity strip. The stronger vortex dominates the overall sound energy
radiation. The major sound generation mechanism is the rate of core deformation of the
stronger vortex. The weaker vortex produces sound basically through its vorticity centroid
dynamics, but is insigni"cant in the overall sound generation. The third type is the
&&tearing'', where part of the weaker vortex core #uid is torn and forms a strip of vorticity
around the stronger vortex core. Again, the sound from the stronger vortex contains both
the high- and low-frequency components, which are produced through the two mechanisms
discussed above. The core deformation becomes the major source of sound after the
vorticity strip from the weaker vortex wraps round the stronger vortex core. The sound
produced by the weaker vortex in the beginning of the interaction shows the characteristics
of those in the identical vortex coalescence case. The contribution from the vorticity
centroid dynamics becomes insigni"cant at increased time of interaction.

The present theoretical deductions are not limited to a particular vortex core shape,
though the vortices are initially assumed to have circular cores. The present results are,
therefore, general for sound generation by all inviscid two-dimensional vortex interactions
at low Mach number.
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